151 research outputs found

    Implementing ultra-high-value floating tunable CMOS resistors

    Full text link

    Genomic and molecular characterization of a novel quorum sensing molecule in Bacillus licheniformis

    Get PDF
    Abstract Quorum sensing molecules (QSMs) are involved in the regulation of complicated processes helping bacterial populations respond to changes in their cell-density. Although the QS gene cluster (comQXPA) has been identified in the genome sequence of some bacilli, the QS system B. licheniformis has not been investigated in detail, and its QSM (ComX pheromone) has not been identified. Given the importance of this antagonistic bacterium as an industrial workhorse, this study was aimed to elucidate B. licheniformis NCIMB-8874 QS. The results obtained from bioinformatics studies on the whole genome sequence of this strain confirmed the presence of essential quorum sensing-related genes. Although polymorphism was verified in three proteins of this cluster, ComQ, precursor-ComX and ComP, the transcription factor ComA was confirmed as the most conserved protein. The cell–cell communication of B. licheniformis NCIMB-8874 was investigated through further elucidation of the ComX pheromone as 13-amino acid peptide. The peptide sequence of the pheromone has been described through biochemical characterisation

    Subwavelength atom localization via amplitude and phase control of the absorption spectrum

    Get PDF
    We propose a scheme for subwavelength localization of an atom conditioned upon the absorption of a weak probe field at a particular frequency. Manipulating atom-field interaction on a certain transition by applying drive fields on nearby coupled transitions leads to interesting effects in the absorption spectrum of the weak probe field. We exploit this fact and employ a four-level system with three driving fields and a weak probe field, where one of the drive fields is a standing-wave field of a cavity. We show that the position of an atom along this standing wave is determined when probe field absorption is measured. We find that absorption of the weak probe field at a certain frequency leads to subwavelength localization of the atom in either of the two half-wavelength regions of the cavity field by appropriate choice of the system parameters. We term this result as sub-half-wavelength localization to contrast it with the usual atom localization result of four peaks spread over one wavelength of the standing wave. We observe two localization peaks in either of the two half-wavelength regions along the cavity axis.Comment: Accepted for publication to Physical Review

    Theoretical study of dark resonances in micro-metric thin cells

    Full text link
    We investigate theoretically dark resonance spectroscopy for a dilute atomic vapor confined in a thin (micro-metric) cell. We identify the physical parameters characterizing the spectra and study their influence. We focus on a Hanle-type situation, with an optical irradiation under normal incidence and resonant with the atomic transition. The dark resonance spectrum is predicted to combine broad wings with a sharp maximum at line-center, that can be singled out when detecting a derivative of the dark resonance spectrum. This narrow signal derivative, shown to broaden only sub-linearly with the cell length, is a signature of the contribution of atoms slow enough to fly between the cell windows in a time as long as the characteristic ground state optical pumping time. We suggest that this dark resonance spectroscopy in micro-metric thin cells could be a suitable tool for probing the effective velocity distribution in the thin cell arising from the atomic desorption processes, and notably to identify the limiting factors affecting desorption under a grazing incidence.Comment: 12 pages, 11 figures theoretical articl

    An Incentive Mechanism for Cooperative Data Replication in MANETs - a Game Theoretical Approach

    Full text link
    Wireless ad hoc networks have seen a great deal of attention in the past years, especially in cases where no infrastructure is available. The main goal in these networks is to provide good data accessibility for participants. Because of the wireless nodes' continuous movement, network partitioning occurs very often. In order to subside the negative effects of this partitioning and improve data accessibility and reliability, data is replicated in nodes other than the original owner of data. This duplication costs in terms of nodes' storage space and energy. Hence, autonomous nodes may behave selfishly in this cooperative process and do not replicate data. This kind of phenomenon is referred to as a strategic situation and is best modeled and analyzed using the game theory concept. In order to address this problem we propose a game theory data replication scheme by using the repeated game concept and prove that it is in the nodes' best interest to cooperate fully in the replication process if our mechanism is used

    Impact of sidewall etching on the dynamic performance of GaN-on-Si E-mode transistors

    Get PDF
    Abstract The aim of this paper is to investigate the role of the etching of the sidewalls of p-GaN on the dynamic performance of normally-off GaN HEMTs with p-type gate. We analyze two wafers having identical epitaxy but with different recipes for the sidewall etching, referred to as "Etch A" (non-optimized) and "Etch B" (optimized). We demonstrate the following relevant results: (i) the devices with non-optimized etching (Etch A), when submitted to positive gate bias, show a negative threshold voltage shift and a decrease in Ron, which are ascribed to hole injection under the gate and/or in the access regions; (ii) transient characterization indicates the existence of two trap states, with activation energies of 0.84 eV (CN defects) and 0.30 eV. The latter (with time-constants in the ms range) is indicative of the hole de-trapping process, possibly related to trap states in the AlGaN barrier or at the passivation/AlGaN interface; (iii) by optimizing the p-GaN sidewall etching (for the same epitaxy) it is possible to completely eliminate the threshold voltage shift. This indicates that hole injection mostly takes place along the sidewalls

    Improving the power-delay performance in subthreshold source-coupled logic circuits

    Get PDF
    Subthreshold source-coupled logic (STSCL) circuits can be used in design of low-voltage and ultra-low power digital systems. This article introduces and analyzes new techniques for implementing complex digital systems using STSCL gates with an improved power-delay product (PDP) based on source-follower output stages. A test chip has been manufactured in a conventional digital 0.18ÎĽ\mum CMOS technology to evaluate the performance of the proposed STSCL circuit, and speed and PDP improvements by a factor of up to 2.4 were demonstrated

    Group velocity control in the ultraviolet domain via interacting dark-state resonances

    Full text link
    The propagation of a weak probe field in a laser-driven four-level atomic system is investigated. We choose mercury as our model system, where the probe transition is in the ultraviolet region. A high-resolution peak appears in the optical spectra due to the presence of interacting dark resonances. We show that this narrow peak leads to superluminal light propagation with strong absorption, and thus by itself is only of limited interest. But if in addition a weak incoherent pump field is applied to the probe transition, then the peak structure can be changed such that both sub- and superluminal light propagation or a negative group velocity can be achieved without absorption, controlled by the incoherent pumping strength

    A low-power, multichannel gated oscillator-based CDR for short-haul applications

    Get PDF

    Vertical breakdown of GaN on Si due to V-pits

    Get PDF
    Gallium nitride on silicon (GaN/Si) is an important technological approach for power electronic devices exhibiting superior performance compared to devices based on a pure silicon technology. However, the material defect density in GaN/Si is high, and identification of critical defects limiting device reliability is still only partially accomplished because of experimental difficulties. In this work, atomic force microscopy, scanning electron microscopy, secondary ion mass spectrometry, and cathodoluminescence were employed to investigate commonly occurring epitaxial overgrown V-pits and inhomogeneous incorporation of oxygen and carbon across layer stacking in the vertical direction. These experiments identified V-pits as regions with higher n-type carrier concentrations and paths for vertical leakage through the buffer, as directly probed by conductive atomic force microscopy. The deleterious effect of V-pits on device performance is demonstrated by evaluating test devices fabricated on two wafers with significantly diverse density of buried V-pits induced by varying growth conditions of the aluminum nitride nucleation layer. A clear correlation between observed vertical breakdown and density of V-pits within the C-doped GaN layer below the device structures is obtained. Back-gating transient measurements also show that the dynamic device behavior is affected by the V-pit density in terms of the detrapping time constants.Gallium nitride on silicon (GaN/Si) is an important technological approach for power electronic devices exhibiting superior performance compared to devices based on a pure silicon technology. However, the material defect density in GaN/Si is high, and identification of critical defects limiting device reliability is still only partially accomplished because of experimental difficulties. In this work, atomic force microscopy, scanning electron microscopy, secondary ion mass spectrometry, and cathodoluminescence were employed to investigate commonly occurring epitaxial overgrown V-pits and inhomogeneous incorporation of oxygen and carbon across layer stacking in the vertical direction. These experiments identified V-pits as regions with higher n-type carrier concentrations and paths for vertical leakage through the buffer, as directly probed by conductive atomic force microscopy. The deleterious effect of V-pits on device performance is demonstrated by evaluating test devices fabricated on two wafers with s..
    • …
    corecore